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Fourier and wavelet transformation techniques are utilized in a complementary
manner in order to characterize temporal aspects of the transition of a planar jet
shear layer. The subharmonic is found to exhibit an interesting temporal amplitude
and phase variation that has not been previously reported. This takes the form of in-
termittent π-shifts in subharmonic phase between two fixed phase values. These phase
jumps are highly correlated with local minima of the subharmonic amplitude. In con-
trast, the fundamental amplitude and phase show no such behaviour. The temporal
phase behaviour of the subharmonic has the effect of intermittently disrupting the
phase lock with the fundamental. A dynamical systems model is developed which is
based on a classic vortex representation of the shear layer. The Hamiltonian formula-
tion of the problem is shown to provide remarkable agreement with the experimental
results. All the essential aspects of the temporal amplitude and phase behaviour of
the subharmonic are reproduced by the model including amplitude-dependent effects.
The model is also shown to provide a dynamical systems based explanation for
time-averaged amplitude and phase behaviour observed in these as well as earlier ex-
periments. The results of experiments involving both bimodal forcing at fundamental
and subharmonic frequencies with prescribed initial effective phase angle as well as
experiments involving only fundamental excitation over an amplitude range extend-
ing two orders of magnitude are presented. The temporal subharmonic amplitude
and phase behaviour is observed in bimodal forcing experiments in those regions of
the flow characterized by subharmonic mode suppression and vortex tearing events
(even if the forcing amplitudes are quite large). In addition, temporal subharmonic
amplitude and phase behaviour is the rule in experiments involving low-amplitude
forcing of the fundamental and the natural development of the subharmonic.

1. Introduction and motivation
The importance of large-scale coherent vortical structures in free shear layer dy-

namics is now firmly established. These structures are often described in terms of
the spatial evolution of vortices, an approach which has been inspired by both flow
visualization and conditional sampling experiments in jets and mixing layers. Such
structures may be equivalently viewed as a superposition of interacting instability
waves that amplify as they propagate in the streamwise direction. There have been
attempts to bridge the gap between wave and structural descriptions. For example,
Ho & Huang (1982) showed that the streamwise locations of fundamental and sub-
harmonic wave saturation correspond, respectively, to the average position of vortex
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roll-up and the location where pairing vortices align vertically. More recently, Yang
& Karlsson (1991) and Rajaee & Karlsson (1992) used a superposition of the mean
flow and four key instability waves (the fundamental, subharmonic, and harmonics
at twice and three-halves the fundamental frequency) in order to obtain a coherent
structure reconstruction of a periodically forced planar mixing layer.

Consistent with a wave description of the shear layer is the use of Fourier analysis
in order to characterize transition by streamwise spectral sequences. These typically
show the exponential amplification of nascent disturbances near the jet nozzle lip (or
splitter plate trailing edge). Linear filtering by the shear layer leads to a well-defined
fundamental instability wave whose exponential streamwise growth leads to nonlinear
saturation at finite amplitude as well as the formation of multiple harmonic modes.
The important role of the local subharmonic instability has been documented in
numerous studies and has been shown to give rise to vortex pairing. Vortex pairing
events have been found largely responsible for local increases in shear layer widening
and the bulk entrainment of ambient fluid. The first vortex pairing event has also
been shown to be a catalyst for the process of mixing transition which gives rise to
rapid growth of small-scale turbulent fluctuations and formation of a spectral inertial
subrange (Huang & Ho 1990).

An explanation for the subharmonic mode selection in free shear layers was first
provided by Kelly (1967) who performed a temporal stability analysis which indi-
cated that when the fundamental grows to sufficient amplitude in the presence of the
subharmonic wave, another instability mechanism occurs which was termed ‘subhar-
monic resonance’. A theoretical investigation of subharmonic resonance by Monkewitz
(1988) explicitly involves the nonlinear interaction between the fundamental and sub-
harmonic under the rather strong restrictions that the flow is locally parallel and
that the fundamental is a linear neutral wave. The effect of the subharmonic on the
fundamental is not included in the formulation. The work establishes a critical funda-
mental amplitude required for resonant fundamental–subharmonic phase locking and
associated enhanced subharmonic growth. The analysis predicts that at fundamental
amplitude near, but less than critical, the initial deviation of subharmonic growth
from exponential will be oscillatory and the amplitude will depend strongly upon
the relative phase angle between the subharmonic and fundamental wave. However,
this transient condition was shown to always be followed by enhanced subharmonic
growth once the fundamental amplitude is above critical.

Experimental confirmation that the selective amplification of the subharmonic
instability occurs by a parametric resonance with the fundamental has been made in
the planar jet shear layer by Thomas & Chu (1991, 1993a,b), in the axisymmetric jet
shear layer by Corke, Shakib & Nagib (1991) and in the planar mixing layer by Hajj,
Miksad & Powers (1992). In agreement with theoretical work by Kelly (1967) and
Monkewitz (1988), these experiments show that direct quadratic nonlinear energy
exchange between fundamental and subharmonic is not the reason for enhanced
subharmonic growth. Rather, the subharmonic is boosted due to resonant energy
transfer from the mean flow associated with forced oscillation of the basic flow at the
fundamental frequency (Drazin & Reid 1983).

Arbey & Ffowcs Williams (1984) showed that the resonant growth of the subhar-
monic depends on the relative phase angle between fundamental and subharmonic
waves. In this paper we denote the total phase of the fundamental and subharmonic
waves as θf = ωft+φf and θs = ωst+φs, respectively, where the angular frequencies
are related by ωf = 2ωs. Of interest with regard to fundamental–subharmonic phase
locking is the ‘effective phase angle’ which is defined in such a manner as to remove



Temporal subharmonic amplitude and phase behaviour in a jet shear layer 207

the explicitly time-dependent portion of the total phase θ. That is,

φeff = θf − 2θs = φf − 2φs. (1.1)

Fundamental–subharmonic phase locking is often examined within the context of
which values of φeff give rise to enhanced or suppressed vortex pairing. Mankbadi
(1985, 1986) used the energy integral technique to analytically investigate the effect
of phase difference upon subharmonic growth in an axisymmetric jet shear layer.
The fundamental–subharmonic (F–S) interaction was found to depend upon the
effective phase angle φeff . Several more recent experimental studies have applied
two-frequency acoustic excitation (at fundamental and subharmonic frequencies) in
order to investigate the effect of F–S phase angle on subharmonic resonance. Yang
& Karlsson (1991) and Rajaee & Karlsson (1992) used a phase-locked Fourier flow
field reconstruction technique to show that the F–S phase of the applied excitation
can either enhance or suppress vortex pairing. Pairing was observed for a wide range
of initial effective phase angles but suppression of vortex pairing was restricted to a
narrow range. Hajj, Miksad & Powers (1993) applied bimodal excitation to a planar
mixing layer at four effective phase angles separated by π/2 radians. In each case the
region of resonant F–S phase locking was found to be associated with a fixed value
of the local effective F–S phase angle. With an emphasis on flow control, Husain &
Hussain (1995) examined the effect of F–S phase angle on vortex dynamics in an
axisymmetric jet shear layer (with large diameter to initial momentum thickness ratio)
and some of their key results are nicely summarized in figure 19 of that reference. They
clearly show that vortex pairing is favoured over a wide range of effective F–S phase
angles while pairing suppression (i.e. ‘vortex tearing’) is maximized near a particular
value of φeff . This result is consistent with the analytical study of Monkewitz (1988)
which suggests a clear preference for subharmonic amplification for a wide range of
phase angles.

Table 1 compares the conditions for pairing or tearing examined in some of the
more recent experimental efforts. In interpreting the results shown in the table, a
distinction must be made between the initial effective F–S phase angle at the jet lip or
splitter plate trailing edge, φin = φeff |x=0, and the effective phase angle downstream at
the onset of resonance. These values will not be the same. Initially the fundamental
and subharmonic waves behave as independent normal modes and have different
phase speeds. At sufficient fundamental amplitude, F–S resonance commences and the
effective phase angle at onset is denoted φr . It is φin that is controlled in experiments
utilizing bimodal forcing and these are the values reported in table 1 (modified where
necessary so as to be consistent with our definition of φeff =φf − 2φs). It is clear,
however, that the corresponding value of φr will depend upon the initial excitation
amplitude of the fundamental and subharmonic modes, the frequency at which the
excitation is applied in relation to the base flow stability characteristics and the lateral
location of the measurement. Hence, the disparity in reported values of φin associated
with vortex tearing is perhaps not surprising.

In the first two studies shown in table 1, detailed experiments were performed at
the two reported values of φin (although pairing was noted over a wide range of
values). In the study by Hajj et al. (1993) the effective phase angle at the streamwise
location of onset of fundamental–subharmonic resonance was found to be φr = 0◦
in each case. As indicated, Husain & Hussain (1995) applied a much wider range of
φin and noted that most values favour pairing while vortex tearing occurs in a very
limited range of phase angles.

Artificial excitation was used in each of the experiments reported in table 1 in order
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Excitation
amplitude‡ φin for tearing¶ φin for pairing¶

Author Flow† (%) (deg.) (deg.)

Yang & Karlsson Mixing layer 0.4 275 75‖
(1991) R = 0.33

Rajaee & Karlsson Mixing layer 0.4 270 90‖
(1992) R = 0.32

Hajj et al. Mixing layer f: 0.18 58 162, 243, 322
(1993) R = 0.65 f/2: 0.34

Husain & Hussain Round jet 0.1 216 Wide range of φ
(1995) shear layer,

R = 1

† R = (U1 −U2)/(U1 +U2), where U1 and U2 are the high and low speeds, respectively.
‡ Expressed as a ratio of U1.
¶ When defined as φin = (φf − 2φs)|x=0.
‖ Studied in detail at the indicated φin but observed over a wide range.

Table 1. Experiments using bimodal excitation.

to achieve ‘clean’ nearly spatially periodic and well-organized coherent structures
that are of interest for flow control applications and/or phase-locked flow field
realizations. Such artificial forcing is required to overcome the natural background
perturbations, particularly at the subharmonic frequency as a result of upstream
feedback. However, such forcing can give rise to behaviour that is distinctly different
from that occurring in the corresponding natural flow. Flow visualization of both
natural and very low-amplitude artificially excited planar shear layers actually reveals
a complex sequence of events that ultimately gives rise to spatio-temporal disorder in
the flow. Complications to the basic vortex pairing scenario are numerous and include
spatial jitter in the vortex roll-up and pairing locations and the apparent random
switching between vortex pairing and tearing events. Indeed, it is the elimination
of this inherent unsteadiness of the vortical interactions that motivates the artificial
forcing used in the experiments in table 1.

In order to investigate this complex, non-periodic aspect of the planar jet shear
layer transition process, a continuous wavelet transform technique was applied to
the hot-wire velocity time-series data, in addition to a conventional Fourier analysis.
Particular attention was focused upon the temporal behaviour of the fundamental
and subharmonic amplitude and phase. In so doing an interesting and previously
unreported temporal behaviour of the subharmonic instability wave amplitude and
phase was observed. These temporal aspects of the shear layer transition which are
lost in conventional ensemble-averaged measurements and are neglected in most
studies form a major focus of this work.

An objective of this paper is to focus on the temporal aspects of F–S phase locking
(often characterized as phase ‘jitter’) as they occur in both bimodally excited and
natural planar jet shear layers. We characterize a previously unreported temporal
amplitude and phase behaviour of the subharmonic instability and in this regard seek
to address the following questions: (i) Where and under what initial conditions does
one observe the temporal subharmonic mode behaviour? (ii) How does one explain
this behaviour within the framework of previous studies of shear layer transition? (iii)
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How can the observed temporal aspects of the shear layer transition be analytically
modelled?

The remainder of the paper is organized as follows: In § 2 the basic features of the
continuous wavelet transform as it is applied in this study are discussed. In § 3 the
flow field facility and supporting instrumentation are described. In § 4 we characterize
the temporal amplitude and phase behaviour of the subharmonic that results from
application of the wavelet transform. In order to relate the wavelet-based results to
previous work we also present conventional measurements similar to those reported
in the cited literature. This serves to: (i) establish the character of our transitioning
flow field in terms of time-average amplitude and effective phase behaviour and (ii)
establishes locations and initial conditions for which the jumping of subharmonic
phase occurs. These experiments reported in § 4 consist of two types: bimodal forcing
experiments and single mode forcing experiments. The bimodal forcing experiments
provide a direct bridge to the studies cited above. In the single mode experiments
only the fundamental is excited acoustically at very low amplitude and for these
cases the temporal behaviour of the subharmonic is commonly observed. This section
investigates the natural development of the subharmonic with particular focus on
the associated subharmonic amplitude and phase modulations. In combination these
experiments explore the development and intermittent character of both the naturally
occurring and artificially forced subharmonic and the effect upon the establishment of
F–S resonant phase locking. Finally, § 5 presents an analytical model inspired by the
experimental results that provides understanding of the phenomenon in the context
of dynamical systems theory. Numerical simulations based upon the model are also
presented and these show very good agreement with the experiments. This dynamical
systems model provides a very convenient context in which nearly all of the complex
temporal features of the F–S interaction may be explained.

2. The wavelet analysis of time-series data
In this section we attempt to motivate our use of the wavelet transform and

highlight some key ideas and relationships which are prerequisites for understanding
the main results presented in this paper.

While Fourier analysis is capable of providing information regarding time-averaged
spectral dynamics it is not well suited for characterizing the instantaneous behaviour.
Because of its quasi-locality in both physical-space and Fourier-space, the wavelet
transformation, which is applied in this paper, provides the capability for one to
track the local time evolution of the flow. This is due to the fact that the wavelet
decomposition utilizes a localized waveform as the basis function. A presentation
of basic wavelet theory may be found in several recent texts on the subject (e.g.
Daubechies 1992; Kaiser 1994; Farge 1992). The application of wavelet analysis
techniques to experimental fluid mechanics is the topic of the paper by Lewalle
(1994). In this study the temporal aspects of the transition of a planar jet shear layer
are investigated by application of a Morlet wavelet decomposition to the measured
streamwise, u′(t), fluctuating velocity component.

The wavelet transformation of a continuous signal g(t) is defined as

GΨ (κ, τ) = κ

∫ +∞

−∞
g(t)Ψ ∗(κ(t− τ)) dt (2.1)

where Ψ (x) is the wavelet mother function, κ is a dilatation parameter, τ is a
translation or shift parameter and superscript ∗ denotes a complex conjugate. In
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equation (2.1) the wavelet transformation is written in the L1-norm, which conserves
the modulus of the function to be transformed (Farge et al. 1996). The localization of
the wavelet in Fourier-physical space is governed by the dilatation parameter κ and
by the time shift τ. The dilatation parameter plays a role similar to that of frequency
in Fourier analysis. In other words, the scale of a given event in g(t) is proportional
to 1/κ. The specific relation between event scale and κ, however, will depend on the
choice of the wavelet mother function. Selection of a particular mother function is
based upon on what kind of information one is interested in extracting from the
signal and is determined by the wavelet shape. This investigation uses a complex
Morlet wavelet mother function as the basis for the wavelet transform. An analytical
expression for the Morlet wavelet is

Ψ (x) = exp

(
ibx− x2

2

)
− exp

(
−b

2

2
− x2

2

)
, (2.2)

where b is a user-specified constant. Note that since the Morlet wavelet is complex,
it can provide local information concerning both amplitude and phase at a given κ.
For example, if the Morlet wavelet transformation (2.1)–(2.2) is applied for the simple
case of g(t) = A exp (i(ωt+ φ)) (something one would not ordinarily do) where ω is
angular frequency, φ is phase angle, and A is a scalar amplitude, a straightforward
calculation gives

GΨ (κ, τ) =
√

2πe−β
(

1− exp

(
−bω
κ

))
Aei(ωt+φ), (2.3)

where

β =
1

2

(ω
κ
− b
)2

.

The resulting wavelet transform of g(t) is a function of both time shift, τ, and κ.
Hence, the Morlet wavelet transform allows one to track the temporal evolution
of the amplitude and phase of transient signals. Wavelet transform results are often
presented in an event-duration–time space. However, in the case of existing tones with
well-defined frequencies, the authors find it more convenient to present the results
in a frequency–time space, (f(κ), τ), in order to relate them to conventional Fourier
analysis. The modulus of (2.3) is maximum for β ≈ 0 and this allows one to relate κ
and frequency. From (2.3) we find that frequency and κ are related by

f(κ) =
bκ

2π
(1 + e−b

2

+ · · ·), (2.4)

which, for the value of b = 6 used in this study, is well approximated by f(κ) ≈ bκ/2π.
Note that the wavelet transform gives only finite frequency resolution. The half-
amplitude and half-power bandwidths of the wavelet transformation (2.3) are easily
shown to be ∆fA/f= 2

√
2 ln 2/b and ∆fP/f= 2

√
ln 2/b, respectively. They are a

function of the user-specified constant b and could be adjusted to any desired value.
The half-amplitude bandwidth for b= 6 is ∆fA/f= 0.39, for example. Note that an
increase in b, while reducing the half-amplitude or half-power bandwidths, would lead
to worse resolution in the temporal domain as will be described later. The value of b
quoted above was found to offer the best compromise in the work to be reported.

If ĝ(ω) is the Fourier transformation of g(t),

ĝ(ω) =

∫ +∞

−∞
g(t) e−iωt dt, (2.5)
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then it is easy to show that

GΨ (κ, τ) =
1

2π

∫ +∞

−∞
ĝ(ω)Ψ̂ ∗

(ω
κ

)
eiωτ dω. (2.6)

Thus an alternative and highly useful interpretation of the wavelet transformation is
that at a given κ, it works like a band-pass filter in Fourier space.

Note that if plotted as a function of time the total phase term θ = ωt + φ obtained
from the wavelet transform (2.1) will exhibit a well-known sawtooth-like oscillation
behaviour (Farge et al. 1996). This behaviour appears as a consequence of the ωt
term. As described in the introduction, it is the second term φ that is in fact constant
for a sinusoid and that is the relevant quantity when considering F–S phase locking
through φeff = φf − 2φs. Unless otherwise noted, in this paper the term fundamental
or subharmonic phase will refer to the second term φ. In particular, we will be
concerned with the temporal behaviour of φf and φs.

Since the focus of this work is on the temporal aspects of free shear layer transition,
particularly those associated with time-dependent amplitude and phase behaviour of
the subharmonic, standard Fourier analysis techniques will not suffice. Fourier analysis
fails to track any temporal variation of signal amplitude and phase and could give
rise to false results. In order to demonstrate this, consider a simple periodic signal
which consists of the fundamental mode as a sine wave and a subharmonic mode as
a cosine wave with a step-changing phase over equal increments in time:

signal(t) = sin (2π× 2500× t) +

{
cos (2π× 1250× t+ π/2), 0 < t 6 0.008

cos (2π× 1250× t− π/2), 0.008 < t 6 0.016.

(2.7)

Fourier transformation of this signal would give a sine wave expansion signal(t) =∑
An sin (2πnt) with mean subharmonic phase φs = 0 which is a completely misleading

result, while the wavelet transformation described above would properly resolve the
temporal phase variation for each mode. Figure 1 presents the results of applying the
Morlet wavelet transform (2.1) to this signal. The raw signal is shown in figure 1(a)
while figure 1(b) presents the modulus of the transform |GΨ (κ, τ)| in the frequency–time
domain (f(κ), τ). The darkest regions correspond to the highest levels of the modulus.
The presence of the two tones at the fundamental and subharmonic frequencies of
2.5 kHz and 1.25 kHz is clearly observed. Note the finite frequency resolution of
wavelet transform. The time evolution of each tone can be revealed by application
of (2.1) for a fixed f(κ). For example, the amplitude variation of the subharmonic is
shown in figure 1(c). The total phase θs = ωst + φs variation with time is presented
in figure 1(d). The ωst term gives rise to the observed ‘sawtooth’ character which also
obscures any possible variation of the φs term. However, since ωs is known, it is
possible to subtract the ωst term from θs and thereby investigate the time dependence
of φs. This result is presented in figure 1(e). Note that the correct subharmonic phase
values of φs = π/2 and φs = −π/2 are indicated with a π-shift occurring at t = 0.008.
This figure also shows the finite time resolution of the wavelet transform as evidenced
by the finite time interval over which the φs shift occurs. The fundamental amplitude
and phase variations are shown in figure 1(f) and figure 1(g), respectively. Again,
the wavelet transform gives the correct values for these quantities. In contrast to the
subharmonic tone, the fundamental amplitude and phase are nearly constant in time.

The above example serves to illustrate that due to its filter-like behaviour, wavelet
analysis can resolve the evolution of each mode independently, provided that the
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Figure 1. Wavelet transform of a test signal: (a) synthetic signal, defined in (2.7), (b)
|GΨ (κ, τ)| in the frequency–time domain, (c) amplitude of the subharmonic mode (f(κ) = 1250 Hz),
(d) total phase θs = ωst + φs of the subharmonic mode, (e) variation of the phase φs of the
subharmonic mode, (f) amplitude of the fundamental mode (f(κ) = 2500 Hz), (g) variation of the
phase φf of the fundamental mode.
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frequency difference between modes is larger than the half-amplitude bandwidth ∆fA.
Later this approach will be applied to the investigation of the φ phase variation of jet
shear layer instability modes. This is possible since very low-amplitude acoustic exci-
tation is applied near the most unstable shear layer frequency. Hence the fundamental
and subharmonic frequencies ωf and ωs are known a priori.

The fundamental and subharmonic instability frequencies in the jet shear layer
under investigation here occur at 2.5 kHz and 1.25 kHz as in the synthetic signal just
considered. However, the fundamental and subharmonic bandwidths in the jet will
be wider than in the synthetic signal. Further, in the real flow additional instability
modes can be present that could potentially complicate application of the wavelet
transform. Depending on the bandwidth of the wavelet transform at a given scale, it is
certainly possible to obtain ambiguous amplitude and phase results if multiple modes
are present. In the Morlet wavelet transform used in our study, the bandwidth may be
adjusted through the parameter b in equation (2.2). As long as the frequency spacing
between spectral modes is greater than the bandwidth of the wavelet transform, the
spectral peaks can be independently resolved. Jet shear layer streamwise velocity
fluctuation power spectra as obtained over a wide range streamwise locations exhibit
well-defined spectral peaks at the fundamental and subharmonic frequencies (Thomas
& Chu 1993a,b). Further, there are no other organized modes present within the
spectral window of interest. Comparison of the measured power spectra to the half-
amplitude bandwidths for the wavelet analysis corresponding to the values of b used in
our study indicate that this requirement is satisfied in our case. This demonstrates that
the wavelet analysis can resolve the fundamental and subharmonic modes properly.

The wavelet transformation is a natural generalization of the spectral transform-
ation concept with Ψ (x) = exp (ix) a Fourier transformation. From (2.1), the wavelet
transformation does not require integration over an infinite time domain centred on
time t = τ. Instead, integration is over a time interval proportional to T ≈ O(1/κ) =
O(b/2πf(κ)) because of a Gaussian decay of Ψ (x) outside the domain. Note that T
is a function of the scale and thus provides a self-adjusting variable time window for
different scales. This demonstrates that the wavelet transformation provides short-
time-average amplitude and phase information (on the order of T ) regarding the
function g(t) at the moment t = τ for any unsteady signal. The price that one pays
for this time localization capability is the finite frequency or scale resolution of the
signal.

It should be pointed out that other techniques are available for recovering unsteady
amplitude and phase modulations. A technique intimately related to the wavelet
transform is the Windowed Fourier Transform (WFT). A comparative example using
both the Morlet wavelet transform and WFT to analyse jet shear layer hot-wire signals
will be presented in § 4. In addition, the complex digital demodulation technique (Kim,
Khadra & Powers 1980) provides unsteady amplitude A(t) and total phase θ(t) if the
signal possesses a well-defined carrier frequency ω. Use of the Hilbert transform
(Bendat & Piersol 1986) provides another option requiring only that the signal be
of the form, signal(t) = A(t) exp (iθ(t)) so that the temporal frequency is calculated
as f(t) = 1/(2π) dθ/dt. However, each method has limitations in the sense that a
priori knowledge of some aspect of the signal’s character is required. In contrast,
the wavelet transformation provides a more general approach to investigating their
transient character. Further, by the selection of different wavelet mother functions,
one can highlight different aspects of the signal under investigation. That the mother
function can be customized to highlight particular aspects of a signal is a real
advantage of wavelet analysis.
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In practice equation (2.1) is commonly replaced by a finite discretized analogue,
which is simply a numerical integral approximation for the case of a zero-order
interpolation between data points:

GΨ (κ, τ) = κ

N∑
i=1

giΨ
∗(κ(ti − τ))∆ti. (2.8)

The signal gi is measured at discrete time points ti, i = 1...N with ∆ti = ti+1 − ti =
∆t = const. Higher-order interpolation schemes can be used to improve accuracy. The
theory of frames bounds the errors of the discrete wavelet calculations (Daubechies
1992; Kaiser 1994) which can be large for very coarse discretization. We find that
in our case this computational error never exceeds 0.1%. In particular, for the
Morlet wavelet it follows from investigation of equation (2.6) that the maximum
resolution is κmax = π/((b+ 3)∆t) so that the maximum correctly resolved frequency
is fmax = b/((b+ 3)∆t). Consequently, in the case of the Morlet wavelet, the sampling
frequency should be at least (2(b + 3))/b times higher than the maximum frequency
to be resolved. Obviously, κmin is on the order of 1/T , where T is the total sampling
time.

3. The flow field facility
The experiments were performed in the developing shear layer of a planar jet flow

field facility at the Hessert Center for Aerospace Research located at the University
of Notre Dame. This is the same facility described in Thomas & Chu (1993a, b) and
therefore only a brief description of essential flow parameters will be presented here.

The two-dimensional nozzle is based upon a cubic contour with zero-derivative end
conditions and has a contraction ratio of 16 : 1, ending in a slot exit that is D = 1.27 cm
in width and H = 45.7 cm in height (i.e. aspect ratio = 36). A duct connecting the
plenum chamber to the nozzle assembly contains acoustic baffling, honeycomb flow
straighteners and multiple turbulence reduction screens. The measurements were
performed at a Reynolds number (based upon exit mean velocity, U0, and nozzle slot
width, D) of approximately ReD = 1.7 × 104 which corresponds to an exit velocity
of U0 = 20.7 m s−1. The exit longitudinal turbulence intensity as measured on the jet
centreline is less than 0.04%. The jet initial mean velocity profiles are flat (i.e. ‘top-hat’
shape) and the mean velocity variation across the nascent jet shear layers is closely
approximated by a hyperbolic tangent type of profile. The free shear layers at the
nozzle lip are both laminar and have an initial momentum thickness θ0 = 0.14 mm.

In order to facilitate control of the initial instability in frequency and amplitude,
a loudspeaker was mounted in the duct upstream of the nozzle assembly. Two types
of excitation were used. The first involved bimodal forcing at the fundamental and
subharmonic frequencies in which case the signal to the loudspeaker was of form
Af cos (2πfet)+As cos (πfet−φin/2). In this manner the exit perturbation amplitudes of
the fundamental and subharmonic could be individually controlled as was the initial
effective phase angle, φin. The fundamental excitation frequency was always fe =
2.5 kHz which is very near the most unstable shear layer frequency and corresponds to
a Strouhal number based on exit momentum thickness of Stθ = 0.017. Measurements
made with bimodal forcing allow comparison with results from works cited in the
introduction and also provide the framework for a main focus of this study which is
the temporal aspects of the naturally occurring subharmonic.

In the second type of experiment only the fundamental instability was artificially
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excited. No attempt was made to force the subharmonic instability, which developed
naturally. For these experiments, the exit fluctuation intensity within a narrow fre-
quency band centred on the fundamental frequency ranged from high to very low
levels: 0.002% 6 (u2(fe))

1/2/U0 6 0.1%. Note that this range extends two orders of
magnitude lower than the forcing levels used in the studies listed in table 1. For
the lowest excitation amplitudes, the initial disturbance level was extremely small
and the shear layer inflectional instability mechanism provided ‘natural’ streamwise
amplification.

Constant-temperature anemometers were used in conjunction with conventional str
aight wire probes to acquire the u′(t) time series signals required for the Fourier and
wavelet analysis. A laboratory PC was used for the digital data acquisition and for
traverse system control. The digital time-series data was sampled at 10 kHz and was
off-loaded to a Sun Sparc 10 station for post processing.

In this paper x denotes the streamwise spatial coordinate measured from the nozzle
exit plane while y is the cross-stream spatial coordinate whose origin is located at the
centre of the jet shear layer (i.e. U(y)/U0 = 0.5). Unless otherwise noted, the lateral
measurement location corresponds to a position in the shear layer for which the
local subharmonic wave amplitude is maximum. The measurements were performed
at streamwise x locations extending from the jet lip to downstream of subharmonic
saturation (i.e. well upstream of the tip of jet potential core).

4. Experimental results
When the continuous Morlet wavelet transform as described in § 2 was applied

to streamwise velocity fluctuation time series in the transitioning planar jet shear
layer, an interesting and previously unreported temporal behaviour of the natural
subharmonic instability was observed that we next describe. By the term ‘natural
subharmonic’ we imply that only the fundamental instability was artificially excited
at very low amplitude (u2(fe))

1/2/U0 ≡ u′f = 0.01% with no artificial excitation of
the subharmonic instability used so that it develops naturally in the flow. Deferring
presentation of details pertinent to the measurement to later in § 4, for now we simply
refer the reader to figure 2 for the purpose of illustrating a representative sample of
this temporal subharmonic behaviour as derived from the wavelet analysis. This figure
presents the time evolution of subharmonic amplitude, subharmonic phase φs, and
the effective phase φeff , and shows the existence of two steady values of subharmonic
phase φs with intermittent π-jumps between them. Note that these jumps are well
correlated with local drops in the subharmonic amplitude. This aspect is highlighted
in figure 2 for one of the subharmonic phase-shift events. In contrast, time intervals
of stable subharmonic phase are associated with elevated subharmonic amplitude.
This behaviour is unique to the subharmonic instability; the fundamental exhibited
comparatively stable amplitude and phase.

As noted earlier, a technique that is closely related to the wavelet transform is
the Windowed Fourier Transform (WFT). However, the WFT provides only average
values of amplitude and phase of the mode over the data block size. Furthermore the
block size is fixed for all frequencies and the averaging over it leads to the possibility
of concealing temporal variations of the amplitude and phase that occur on time
scales shorter than the block size. Obviously what one sees will then depend on the
window length and proper adjustment of the block size can require considerable prior
knowledge of the signal. In contrast, in § 2 it was shown that the wavelet transform
utilizes a variable time-window approach, which allows one to recover the dynamics
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Figure 2. Temporal variation of subharmonic amplitude, phase and effective phase: u′f = 0.002%,

u′s = 0, x/θ0 = 110.

of the signal at any frequency with minimal prior knowledge about the signal one
has properly sampled. For example the temporal amplitude and phase behaviour of
the subharmonic mode shown in figure 2 was found by direct application of the
Morlet wavelet transform. However as shown in figure 3, with prior knowledge of
the time scales involved in the dynamics as gleaned from wavelet analysis, the WFT
is capable of showing the same essential characteristics, albeit less clearly. Actually,
these drawbacks of the WFT led to the development of the wavelet transform. An
excellent discussion highlighting both the similarities and key differences about the
WFT and the continuous wavelet transform can be found in §§ 2 and 3, respectively
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Figure 3. Comparison between windowed Fourier and wavelet transforms.

of Kaiser (1994). Also shown in figure 3 are the values of subharmonic amplitude
and phase provided by conventional Fourier transform analysis (designated by FT).

A systematic series of experiments was undertaken in an effort to (i) determine the
locations and initial conditions for which temporal subharmonic behaviour like that
shown in figure 2 occurs, (ii) relate these effects to the previously cited studies which
use conventional Fourier analysis techniques. In the following portions of this section
results from two types of experiments are presented. Consideration is first given to
the case of bimodal forcing at the fundamental and subharmonic frequencies over a
wide range of initial F–S phase angles. The forcing amplitudes for these experiments
are similar to those used in the investigations reviewed in § 1. The purpose of these
experiments is to provide a basis for comparison with previous work and to set the
framework for contrasting with results involving the natural subharmonic shear layer
evolution. For these measurements we utilize experimental methods similar to those
used in the cited literature in addition to the wavelet analysis technique.

It is the natural subharmonic evolution that forms the focus of the second group of
experiments. For these, only the fundamental instability is excited at low amplitude
while the subharmonic is allowed to develop naturally. The shear layer dynamics
observed in these experiments are characterized by an inherent temporal variation
that forms a major focus of this work. The observed temporal behaviour of the
subharmonic instability is the motivation for a Hamiltonian system approach to
vortex pairing and tearing interactions in the shear layer. However, it will be later
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Figure 4. Measured cross-stream variation of fundamental and subharmonic amplitudes and local
effective phase at x/θ0 = 60 for φin = 180◦.

shown that the resulting model also predicts many aspects observed in the experiments
using bimodal forcing at higher amplitude.

Measurements were performed at several lateral locations within the jet shear layer.
However, since a focus of our paper is on the dynamic behaviour of the subharmonic
instability, the data that we present below were obtained near the location of maximum
subharmonic amplitude. These may be considered representative of results obtained
at the other lateral locations, which exhibited qualitatively similar dynamic behaviour.

4.1. Bimodal forcing experiments

In experiments using bimodal forcing at fundamental and subharmonic frequencies,
several amplitude combinations were explored. In this section we will present results
obtained for two of these combinations that are representative of the type of behaviour
encountered and which serve to provide a basis for comparison with previous studies.
In the first case (u2(fe))

1/2/U0 ≡ u′f = 0.01% and (u2(fe/2))1/2/U0 ≡ u′s = 0.1%. In the
second case both fundamental and subharmonic forcing amplitudes were the same:
u′f = u′s = 0.1%. The fairly high level of excitation used in these experiments modifies
the shear layer dynamics in the sense that it reduces the natural ‘phase jitter’ and
allows the use of standard Fourier analysis techniques for investigating the spatial
amplitude and phase behaviour of the developing modes.

In terms of tracking the streamwise evolution of the effective F–S phase angle
care must be taken in the selection of the lateral location of the measurement. As
an example, figure 4 shows a typical cross-stream profile of the fundamental and
subharmonic modal amplitudes as well as the local effective F–S phase angle φeff

obtained at the x/θ0 = 60 location for the initial effective phase φin = 180◦. It is
apparent from this figure (and other cross-stream profiles that were obtained but are
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Figure 5. (a) Local subharmonic amplitude variation and (b) local effective phase as a function of
φin for u′f = 0.01%, u′s = 0.1%.

not presented) that the local φeff value strongly depends on the cross-stream location
in the shear layer. For this reason, care must be exercised when comparing effective
phase results from different experiments. It should also be remembered that the initial
effective phase, φin, is actually a value imposed at the exit plane of the jet nozzle.
Due to the strong lateral spatial gradients in φeff , the corresponding initial value in
the shear layer will vary accordingly.

In order to demonstrate the local response of subharmonic amplitude to initial
F–S phase angle, φin, figure 5(a) presents measurements of subharmonic amplitude
(normalized by the local subharmonic maximum) as obtained at selected x/θ0 lo-
cations both upstream and near subharmonic mode saturation as a function of the
initial effective phase angle, φin. Figure 5(b) presents the corresponding local values
of effective F–S phase angle, φeff , as a function of φin. The data of figures 5(a) and
5(b) correspond to fundamental and subharmonic forcing amplitudes of u′f = 0.01%
and u′s = 0.1%.

Figure 5(a) shows that at x/θ0 = 50 the subharmonic amplitude exhibits a clear
dependence on the initial effective phase angle, with a maximum near φin = 30◦
and a minimum for φin = 220◦. Similar subharmonic amplitude behaviour can be
observed at the x/θ0 = 60 station with the local subharmonic amplitude maximum
at φin ≈ 40◦ and minimum amplitude shifted to φin ≈ 260◦. By x/θ0 = 80 (which is
near subharmonic amplitude saturation) there exists a broad range of initial effective
phase angles for which the subharmonic amplitude remains virtually constant and
very near the maximum value. These values of φin are associated with vortex pairing.
Only for a limited range of φin does the subharmonic amplitude decrease. There is a
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cusp centred near φin = 280◦ in which the subharmonic amplitude drops drastically.
The cusp of reduced subharmonic amplitude (which is associated with vortex tearing)
is quite localized in φin. This result demonstrates that in the nonlinear region of the
flow, vortex pairing is highly favoured (i.e. most φin values will favour vortex pairing).
The behaviour shown for x/θ0 = 80 is very reminiscent of that shown in figure 3(c)
of Husain & Hussain (1995). They observed a cusp at φin = 216◦ for higher forcing
levels (both fundamental and subharmonic were excited at 0.1%). Their experiments
at a forcing level of 1% showed similar behaviour with the cusp occurring at 306◦.

Figure 5(b) shows the average local effective phase angle φeff as a function of φin
for the same streamwise stations as those presented in figure 5(a). At the x/θ0 = 50
location the local effective phase varies linearly with φin. At x/θ0 = 60 the variation
of φeff with φin is observed to be quite nonlinear for 0◦ < φin < 120◦ and 240◦ < φin <
360◦. Finally, near x/θ0 = 80 the effective phase exhibits a strong nonlinear variation
with φin. In particular, the local effective phase only weakly follows the φin linear
variation and appears to lock onto either one of two values. There are two localized
π-phase shifts between these phase plateaux for φin ≈ 0◦ and φin ≈ 270◦. The latter
value is centred near the cusp corresponding to minimum subharmonic amplitude
shown in figure 5(a). Figure 5(b) shows that once F–S locking occurs, there are two
allowed effective F–S phase angles. These are shifted by π radians with respect to
each other and the values are observed to be largely independent of φin (though they
are functions of x/θ0).

For the bimodal shear layer excitation condition corresponding to figure 5(a,b),
two values of φin were selected in order to investigate the streamwise subharmonic
evolution. The selected values were φin = 0◦ which corresponds to strong subharmonic
growth (i.e. vortex pairing) and φin = 260◦ which corresponds to subharmonic sup-
pression (i.e. vortex tearing). The streamwise evolution of modal amplitudes of both
the fundamental instability, fe, and subharmonic, fe/2 for both φin cases are shown
in figure 6 (as determined from conventional Fourier analysis). The profound effect
that the initial F–S phase angle φin can have upon the development of the jet shear
layer is apparent from this figure. In the φin = 0◦ case, the subharmonic exhibits
strong growth and saturates near x/θ0 = 80. In the φin = 260◦ case the subharmonic
amplitude is strongly suppressed over the range 60 < x/θ0 < 120 and is actually in
decay over 55 < x/θ0 < 80. The back effect of the subharmonic on the fundamental is
also apparent, an aspect not treated in the theory of Monkewitz (1988). Figure 6 also
presents the streamwise variation in average effective phase φeff (also determined by
Fourier analysis) which behaves quite differently in each case. In both cases, however,
the local effective phase angle φeff is observed to vary continuously with x. This
indicates that the values of the effective phase φeff plateaux shown in figure 5(b)
for x/θ0 ≈ 80 are local and will, in general, vary in the streamwise direction. Note,
however, that in the region of subharmonic decay (55 < x/θ0 < 80) in figure 6, the
effective phase curves for the two cases are separated by π radians. The theoretical
model, to be presented in § 5, will explain the existence of the two possible values for
the local effective phase and the π-dislocation in phase separating the two. Figure 6
indicates that while the particular value of φeff associated with the plateaux in phase
vary in the streamwise direction, the local values associated with pairing and tearing
remain separated by π radians in the region of strongest subharmonic suppression.

In the bimodal forcing experiments the Morlet wavelet transform was applied to
the experimentally obtained streamwise velocity fluctuation time histories. The phase
time histories φf(t) and φs(t) were extracted by application of equation (2.1) at the
appropriate fixed κ. The associated effective phase time history was then obtained
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Figure 6. Streamwise evolution of fundamental amplitude, subharmonic amplitude, φeff and r.m.s.
of φeff for φin = 0◦ (pairing) and φin = 260◦ (tearing), u′f = 0.01%, u′s = 0.1%.

as φeff (t) = φf(t) − 2φs(t). The root-mean-square (r.m.s.) value of the φeff (t) time
history provides an indication of regions where temporal phase variations are most
significant. The lowest plot of figure 6 presents the resulting streamwise variation
of the r.m.s. of the effective phase as determined from the wavelet analysis. This
provides a measure of the degree of temporal variation of the measured effective F–S
phase φeff . As shown in the example presented in figure 1, the finite time resolution
of the wavelet transform will have the tendency to smooth a sudden shift in phase.
In effect, the step change in phase is low-pass filtered. As such, one could argue
regarding the physical relevance of the r.m.s. value of the effective phase. However,
there is no question that it represents a good indicator of those x locations where
φeff exhibits temporal variation and this is our only purpose in presenting the r.m.s.
phase values shown in figure 6. The streamwise variation in r.m.s. is presented for
both excitation cases. In the case φin = 0◦, which favours strong subharmonic growth
(i.e. vortex pairing) the r.m.s. ≈ 0 for all x indicating the inherent temporal stability
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of φeff for φin = 160◦ (pairing) and φin = 180◦ (tearing), u′f = u′s = 0.1%.

of the local effective F–S phase. In the second case, φin = 260◦, which corresponds to
subharmonic suppression (i.e. vortex tearing), the r.m.s. is observed to be significantly
increased for 60 < x/θ0 < 120 which is the same streamwise region which exhibits
subharmonic suppression. This implies that this region is also characterized by a high
level of temporal variation in phase. We will consider this region further when we
present additional wavelet analysis results in the next section.

Figure 7 presents the streamwise amplitude variation of the fundamental and
subharmonic modes, the local effective F–S phase (as determined by Fourier analysis)
and the r.m.s. of the effective phase (obtained via wavelet analysis as described above)
for bimodal excitation at amplitudes u′f = u′s = 0.1%. Two cases are shown: φin = 160◦
and φin = 180◦. Due to the higher fundamental excitation amplitude, the fundamental
saturates at x/θ0 ≈ 35 in both cases which is well upstream of the saturation location
shown in figure 6. Again, significant disparities in the streamwise evolution of the
subharmonic instability may be observed. In particular, the subharmonic is suppressed
in the region 40 < x/θ0 < 70 for the φin = 180◦ case. In contrast, the φin = 160◦
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case is characterized by strong subharmonic growth. As in figure 6, there is a π
difference in local φeff values between the two cases in the region 40 < x/θ0 < 50
which is associated with strong subharmonic suppression. Note, also that for the
φin = 180◦ case, the r.m.s. exhibits elevated values in this region as was the case
in figure 6. In contrast, the φin = 160◦ case shows values of r.m.s. ≈ 0 indicating
little temporal variation in effective phase. This leads to the conclusion that the
subharmonic suppression is characterized by an inherently unsteady effective phase
behaviour. Comparison of figures 6 and 7 also indicates that the φin giving rise to
subharmonic suppression is clearly dependent upon the initial excitation level.

4.2. Single mode forcing experiments: natural subharmonic evolution

In the second series of experiments, only the fundamental instability wave was
artificially excited. Since there is no artificial forcing at the subharmonic frequency,
the subharmonic mode will develop naturally and eventually reach an optimum phase
relationship with the fundamental mode. These experiments focus on the natural
aspects of the F–S interaction which will be shown to be inherently unsteady. Both
standard Fourier and the Morlet wavelet transformations were applied in order to
process the hot-wire signals.

In figure 8 the streamwise evolution of both fundamental and subharmonic modes
as well as the local average effective phase angle φeff are presented for several different
fundamental excitation amplitudes spanning two orders of magnitude: 0.006% < u′f <
0.1%. The subharmonic is not artificially excited; u′s = 0. There will, of course, be a
naturally occurring subharmonic perturbation near the nozzle lip due to upstream
feedback. The streamwise coordinate x is non-dimensionalized by xs which is the
location of subharmonic mode saturation for each case. All measurements were
taken along the line of the local subharmonic cross-stream maxima. Standard Fourier
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analysis techniques were utilized to obtain the modal amplitudes and average local
effective phase shown in figure 8.

In the initial region x/xs < 0.5, a wide range of φeff values is observed and these
clearly depend on fundamental excitation level. The fundamental wave amplitude
saturates farther upstream with increased initial excitation amplitude, u′f , as indicated.
However, for x/xs > 0.5, the local effective phase angles are found to converge and all
exhibit a similar streamwise variation. In this region the fundamental mode decays,
the subharmonic mode is strongly amplified and all φeff values remain near a value of
3π/4 ≈ 2.4. Note that this is quite near the local values of φeff which were found to be
associated with strong subharmonic amplification in the bimodal forcing experiments
(figures 6 and 7) In fact, there is a strong similarity in the streamwise variation in
φeff observed in figures 8, 7 and 6. Figure 8 shows that just upstream of subharmonic
mode saturation the fundamental reaches minimum amplitude and φeff exhibits a
sudden drop to a value near zero.

The data of figure 8 were used to determine whether a critical fundamental
amplitude exists for onset of F–S resonance. The criterion used to characterize
initiation of resonance was the departure of the local effective phase φeff from its
initial streamwise variation and its approach toward the converged effective phase
values shown in figure 8. With the exception of the highest excitation case, the
fundamental amplitudes corresponding to these streamwise locations were found to
be at a value of 0.016U0 within experimental uncertainty. This corresponds well to
the value of 0.015U0 predicted by the analysis of Monkewitz (1988) for a mixing layer
with velocity ratio R = 1.

These results show that for a wide range of initial fundamental excitation amplitudes
the shear layer will, after the fundamental reaches sufficient amplitude (approximately
0.016U0), begin to exhibit a similar nonlinear variation of φeff as a function of
x/xs. In a sense, with sufficient downstream distance the effect of initial conditions
is gradually lost and a common phase and subharmonic amplitude behaviour is
observed. Sustained vortex tearing must be artificially forced via bimodal excitation
and is not observed in the results depicted in figure 8. From figure 8 one can also
conclude that φeff at x = 0 is a function of initial fundamental excitation amplitude
and therefore there is no unique optimum φin value for the jet shear layer. An amplitude
dependence of φin for subharmonic suppression was also noted in the bimodal forcing
experiments.

Two cases of low-level fundamental excitation were selected in order to investigate
the temporal aspects of the F–S interaction. The streamwise variation of both the fe
and fe/2 modal amplitudes as well as the local average effective phase φeff and its r.m.s.
are presented in figure 9 for the case of extremely low-level fundamental excitation,
u′f = 0.002% (i.e. slightly above natural background disturbances within a narrow
frequency band centred on fe). It is apparent from the high values of r.m.s. that the
effective phase exhibits a high degree of temporal unsteadiness, especially in the region
extending to x/θ0 ≈ 80. In the region x/θ0 > 80 the temporal φeff -fluctuations are
significantly reduced. This indicates that the fundamental and natural subharmonic
mode establish a certain degree of resonant phase locking in this region. This is
confirmed by the streamwise variation in the cross-bicoherence which is presented
in figure 9. Note the large increase in cross-bicoherence b2(fe,−fe/2) commencing
near x/θ0 ≈ 80 which confirms the enhanced phase locking between the fundamental
and subharmonic waves at this location. However, even in the region of strongest
subharmonic growth, there is still an inherent unsteadiness and the r.m.s. remains
greater than zero. This is also shown in the streamwise amplitude variation of the
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Figure 9. Streamwise variation of fundamental and subharmonic amplitudes, φeff , r.m.s. of φeff

and cross-bicoherence for u′f = 0.002%, u′s = 0.

subharmonic which appears quite jagged. The amplitude was computed by standard
Fourier analysis with an ensemble average over twenty five data blocks. Due to the
inherent temporal variation of the natural subharmonic this was insufficient in this
case to achieve a smooth spectral estimate. This behaviour may be contrasted with
the case of moderate fundamental excitation u′f = 0.01%, u′s = 0 which is presented
in figure 10. In this case the subharmonic amplitude reaches a much higher saturation
value and the spectral estimates are smooth. The corresponding r.m.s. values are
near zero which indicates a smaller degree of the temporal phase variation. This
indicates that the F–S phase locking is much stronger in this case and the increased
amplification of the subharmonic results.
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φeff for u′f = 0.01%, u′s = 0.

The results presented to this point demonstrate that temporal variation in effective
phase behaviour (as evidenced by high r.m.s. values of effective phase) may be ex-
pected in bimodal forcing experiments in those regions characterized by subharmonic
mode suppression even if the forcing amplitudes are quite large. In addition, tem-
poral phase variation is the rule in experiments involving low-amplitude forcing of
the fundamental and natural development of the subharmonic. In order to properly
investigate these temporal aspects of the shear layer dynamics, a wavelet transfor-
mation technique was applied in the analysis of the hot-wire signals. To demonstrate
the effectiveness of the wavelet transform for this purpose, consider the modulus of
the Morlet wavelet transform of the shear layer hot-wire signal which is presented in
figure 11. The signal for figure 11 corresponds to u′f = 0.002%, u′s = 0 (no artificial
subharmonic excitation) at x/θ0 = 90 (i.e. just upstream of subharmonic saturation,
see figure 9). The abscissa is time τ(s) and the ordinate is f(κ) = bκ/2π (and is ex-
pressed in Hz). The use of frequency units on the ordinate is potentially misleading
and it must be emphasized that this should not be interpreted as implying periodicity.
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Figure 11. Morlet wavelet transform modulus |GΨ (κ, τ)| at x/θ0 = 90, u′f = 0.002%, u′s = 0.

Rather this is a convenient way to relate an event from the wavelet analysis to the
standard Fourier analysis results. The modulus of the signal is plotted in the form
of a shaded contour plot with darker shading associated with higher levels of the
signal modulus. The f(κ) values associated with the fundamental and subharmonic
instabilities are identified on the ordinate. The temporal variation of the subharmonic
modulus is especially apparent. The modulus of the fundamental is, by comparison,
fairly constant. Maxima and minima of the subharmonic modulus do not appear
correlated with any similar variation in the fundamental. Figure 11 clearly demon-
strates the inherent temporal variation that characterizes the natural subharmonic
instability.

As in the example presented in figure 1, at any selected x-station one can obtain
a time series corresponding to the amplitude envelope and phase of individual shear
layer modes by taking a ‘slice’ of the wavelet transform (e.g. like figure 11) at the
appropriate f(κ). Since the focus of this paper is on the fundamental and subharmonic
instabilities, this manner of presenting the wavelet transformation results is more
appropriate than full contour plots in f(κ), τ space. Consequently, in the remainder of
the paper wavelet results will be presented in terms of derived amplitude and phase
time series for the fundamental and subharmonic instability waves. Recall also that
it is the phase term φ and not θ that is of primary interest.

Figure 2 presented the time variation of the amplitude and phase of the subhar-
monic instability at x/θ0 = 110 for the case of u′f = 0.002% and u′s = 0. Figure 9 shows
this location to be in a region of natural subharmonic growth although the r.m.s.
of the effective phase > 0. Examination of figure 2 reveals an interesting temporal
behaviour of the subharmonic mode which was already highlighted at the beginning
of this section. It shows the existence of two steady values of subharmonic phase
with intermittent π-jumps between them. These phase jumps are observed to be well
correlated with local drops in the subharmonic amplitude. In contrast, time intervals
of stable subharmonic phase are associated with elevated subharmonic amplitude.
Although not presented in figure 2, the fundamental amplitude and phase do not
show any behaviour of this sort; both exhibit only very small temporal variation. The
π-jumps in subharmonic phase give rise to corresponding intermittent disruptions in
the local effective phase angle, φeff , which is also presented in figure 2. The resonant
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Figure 12. Temporal variation of subharmonic amplitude, phase and effective phase: u′f = 0.01%,

u′s = 0, x/θ0 = 70.

phase locking between fundamental and subharmonic is shown to be intermittently
disrupted due to the unsteady phase behaviour of the subharmonic.

Figure 12 shows wavelet transform results obtained at x/θ0 = 70 for a higher
fundamental excitation amplitude, u′f = 0.01% and u′s = 0. As in the previous case, the
subharmonic phase is characterized by stable values which are interrupted by π-shifts
that correlate with minima in the subharmonic amplitude. The fundamental is, by
comparison, steady in amplitude and phase. However, a notable difference between
the behaviour shown in figures 2 and 12 is that for the higher-amplitude forcing case,
the subharmonic phase exhibits a clear preference for one of the phase plateaux with
little time spent at the other: 92% residence time at one phase value and only 8% at
the other. In figure 2, both plateaux are nearly equally probable: 52% at one phase
value and 48% at the other. This amplitude-dependent effect will be explained by
the dynamical systems model to be presented in § 5. The phase dislocation behaviour
shown in figures 2 and 12 was found to be typical of the regions of the flow
corresponding to 80 < x/θ0 < 150 for both low- and moderate-level fundamental
mode excitation, which corresponds to the region of the strongest F–S interaction.

Recall that in the experiments involving moderate- and even high-level bimodal
forcing, regions of subharmonic mode suppression were found to be associated with
unsteady effective phase behaviour as evidenced by high values of the r.m.s. of the
effective phase. Application of the Morlet wavelet transformation to those regions
shows a similar unsteady phase behaviour to that described above. For example,
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Figure 13. Temporal variation of subharmonic amplitude, phase and effective phase: u′f = 0.01%,

u′s = 0.1%, x/θ0 = 80, φin = 260◦ (tearing).

figure 13 shows Morlet wavelet transformation results corresponding to bimodal
excitation with u′f = 0.01%, u′s = 0.1% and φin = 260◦ at location x/θ0 = 80. This
case corresponds to the strong subharmonic suppression shown in figure 6. Figure
13 indicates that while the amplitude envelope and phase of the fundamental are
quite steady, the subharmonic instability has both temporal amplitude and phase
behaviour which is similar in character to that shown in figure 2 for the natural
subharmonic. In this case the temporal behaviour is characterized by longer periods
of stable subharmonic phase at two possible values which are interrupted by sudden,
intermittent phase shifts. These correlate well with local minima in subharmonic
amplitude. Comparison of figures 6 and 13 suggests that these temporal phase events
are associated with the vortex tearing process.

5. Theoretical model
5.1. Model formulation

In an attempt to model the temporal behaviour observed in the experiments, one can
take two approaches. One can utilize a wave formulation and apply nonlinear stability
analysis, which, by necessity will be restricted to weak nonlinearity. An alternative
approach is to recognize that an essential aspect of the flow in the region in question
(say, 70 < x/θ0 < 150) is the mutual interaction of spanwise shear layer vortices.
Advantages of a vortex dynamics approach are that a fully nonlinear model can
be developed and the results are easy to interpret within the context of large-scale
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Figure 14. Schematic of the array of vortices.

structures. In this section a nonlinear model, based on the theory of interacting
vortices as outlined in classic texts by Lamb (1945) and Batchelor (1967) is developed
in order to explain the temporal behaviour observed in the experiments. The approach
we take is similar to that utilized by Betyayev, Gaifullin & Gordeyev (1994) to build
a fully nonlinear model simulating the evolution of a spiral vortex sheet.

As an idealization, the shear layer near the roll-up location is replaced by an
infinite array of two-dimensional vortices, each having a solid-like core and the same
circulation Γ . In a coordinate system convecting with the vortices x−Uct→ x, where
Uc is the mean convective speed of the vortices. The geometry and the coordinate
system are shown in figure 14. Using Taylor’s hypothesis, in this moving frame of
reference the spatial coordinate x in the model actually corresponds to the time
coordinate in the physical problem. Also the key parameter of the system now
becomes the fundamental wavelength λf (the distance between the vortices), instead
of the fundamental passage frequency.

The azimuthal velocity induced by a single vortex uθ as a function of a distance
from its centre r is taken as

uθ =
Γ

2π

r

a2 + r2
, (5.1)

where a defines the radius of the core. The location of each particular vortex is
defined by a coordinate pair (xj, yj). For the case of a single row of equally spaced
vortices with λf = 1 (xj = j, yj = 0), the u-component of the flow field is given by
(Lamb 1945)

u0(x, y, a) =

+∞∑
j=−∞

Γ

2π

y

a2 + y2 + (x− j)2

=
Γy

2
√
a2 + y2

sinh (2π
√
a2 + y2)

cosh (2π
√
a2 + y2)− cos (2πx)

, (5.2)

with the time mean profile U(y) =
∫ 2π

0
u(x, y) dx = Γy/

(
2(a2 + y2)1/2

)
.

The dynamics of the system is governed by the following system of ODEs (Batchelor
1967; Lamb 1945):

dxj
dt

= − Γ
2π

∑
k 6=j

yk − yj
r2
kj

,
dyj
dt

=
Γ

2π

∑
k 6=j

xk − xj
r2
kj

, (5.3)

where r2
kj = a2 + (xk − xj)2 + (yk − yj)2. For simplicity, but without loss of generality,

we take Γ to be 2π. The above system is the Hamiltonian system

dxj
dt

= −∂H∞
∂yj

,
dyj
dt

=
∂H∞
∂xj

, (5.4)
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Figure 15. The geometry of the perturbed vortex system.

with

H∞(xj, yj) = −1

2

∑
j

∑
k 6=j

log (r2
kj). (5.5)

Consider, in particular, a line of vortices equally spaced along the x-axis with unity
distance between them (λf = 1) as shown in figure 15. Introduce a subharmonic
perturbation with λs = 2λf = 2 as

xj = j + δ cos (2πj/λs), yj = ε cos (2πj/λs). (5.6)

Now the evolution of the system is characterized by the two new variables (δ(t), ε(t)).
Formally the sum (5.5) does not exist for this system, but equals −∞. However, this
problem is eliminated by subtracting the undisturbed H∞(j, 0) from H∞, since we are
only interested in the gradient of H∞. After substituting (5.6) into (5.4) and with
considerable algebra the system (5.4) can be rewritten for the new variables as

dδ

dt
= −∂H∞

∂ε
,

dε

dt
=
∂H∞
∂δ

, (5.7)

with

H∞ = −1

2

n=+∞∑
n=−∞

log

{[
1 +

4(ε2 + δ2)

a2 + j2

]2

−
[

4δj

a2 + j2

]2
}
, j = 2n+ 1. (5.8)

Thus (δ, ε) is the pair of canonical variables for the system. Carrying out the summa-
tion of (5.8) (see the Appendix for details), one can obtain the following analytical
expression for the Hamiltonian, H∞(δ, ε):

H∞(δ, ε) = − 1
2

log
[
cos2 (πδ) + sinh2(π

√
(a/2)2 + ε2)

]
. (5.9)

Now the discrete system (5.4) is replaced by the continuous system (5.7) with H∞ in
the form of (5.9), which is much more amenable to theoretical analysis. Moreover,
due to the symmetry of (5.7), the numerical instability of (5.4) is removed from the
system and the physical behaviour of this configuration of vortices can be unambiguously
investigated. For Hamiltonian systems, H∞ is the invariant of the system (the energy
invariant), e.g. H∞(δ, ε) = const. along trajectories (δ(t), ε(t)). In other words, the
isolines of H∞ show the system behaviour in phase space and this is depicted in figure
16(a) and in greater detail in figure 16(b).

The system has three physically distinct fixed points: two centre points at (± 1
2
, 0)

and one saddle point at (0, 0). The saddle point corresponds to the instability of the
vortex line, while the two centres show the existence of two regimes where the system
of vortices form interacting pairs. The resulting locations of vortex pairs in both
regimes are shifted with respect to each other a distance of λs/2 = 1.

The velocity field can be found by noticing that the vortex system is a superposition
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Figure 16. (a) The global and (b) detailed view of the phase trajectories of the system (5.7), a = 0.1.
(c) The subharmonic amplitude and the phase behaviour. The location of the stochastic layer is
shown by a striped region.

of two lines of vortices with appropriate streamwise and lateral shifts (see figure 15):

u(x, y; δ, ε, a) =
1

2

[
u0

(
x+ δ

2
,
y + ε

2
,
a

2

)
+ u0

(
x− δ + λf

2
,
y − ε

2
,
a

2

)]
, (5.10)

where u0(x, y, a) is defined by (5.2). A Fourier expansion of (5.10) gives

u(x, y; δ, ε, a) =
1

2

[
A0

(
y + ε

2
,
a

2

)
+ A0

(y − ε
2

,
a

2

)]
+A1

(
y + ε

2
,
a

2

)
cos

(
2π
x+ δ

λs

)
+A1

(y − ε
2

,
a

2

)
cos

(
2π
x− δ − λf

λs

)
+ · · · , (5.11)

with A0(y, a) =
∫ 1

0
u0(x, y, a) dx = 2πy/(a2 +y2)1/2 and A1(y, a) =

∫ 1

0
u0(x, y, a) cos (2πx)

dx = 2πy/(a2 + y2)1/2 exp (−2π(a2 + y2)1/2). The subharmonic term is found in the
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form As(δ, ε, a) exp (i(2πx/λs + φs(δ))) with

As(δ, ε, a) = A(ε, a)| sin (2πδ/λs)|,
φs(δ) = π/2 sign (sin (2πδ/λs)),

}
(5.12)

whose behaviour versus δ for fixed ε is plotted in figure 16(c).
The subharmonic mode has two stable points: φ1 = π/2 if sin (πδ) > 0 and

φ2 = −π/2 if sin (πδ) < 0. For a phase-space location in the shaded region (e.g. point
A of figure 16b) framed by a separatrix (shown as a thick dark line) the subharmonic
phase φs remains constant and in this sense the region can be called a stable one.
In the outer region, when the trajectory (δ(t), ε(t)) crosses the line δ = 0 (point B of
figure 16b, for example), the subharmonic phase φs experiences a π-jump while the
amplitude As drops to zero as shown in figure 16(c). The similarity between the model
subharmonic behaviour shown in this figure and the experimental results highlighted in
the inset region of figure 2 is readily apparent.

It is important to know that although the system is deterministic, it is very sensitive
to the conditions in the neighbourhood of the separatrix. Any small variations of ε
and/or δ can make the system leave a stable region, giving rise to changes in φs, since
trajectories in the outer region result in π phase jumps and subharmonic amplitude
minima. Alternatively the system could return back to a stable region, where φs
remains constant.

Note that the temporal behaviour of the system in the outer region can be de-
scribed as a tearing and re-pairing process. The tearing phenomenon implies that the
interaction within a pair of vortices becomes weak, the nascent vortex pair tears apart
and the vortices start to behave as isolated ones. In contrast, the temporal behaviour
in the inner region corresponds to vortex pairing.

5.2. On the application of the model to the jet shear layer

In the jet shear layer excited at low-amplitude an array of well-defined vortices exists
for 70 < x/θ0 < 200. The fundamental wavelength λf = Uc/ff ≈ 4 mm gives a rough
estimate of the distance between vortices which, in turn, suggests that M ≈ 4 − 5
spanwise two-dimensional vortices exist in this region at any given time. The theory
which has been developed is based on an infinite number of vortices and cannot
be applied directly to a finite line of vortices. However, let us consider any pair of
vortices in this line with the corresponding ε and δ. The governing system for the
dynamics of the pair is

dε

dt
=
∂H

∂δ
,

dδ

dt
= −∂H

∂ε
. (5.13)

The Hamiltonian H for the pair of vortices can be written as H = H∞ + ∆H , where
the Hamiltonian H∞ corresponds to an infinite line of vortices, properly aligned
according to (5.6) for a given ε and δ, and ∆H is the deviation of the Hamiltonian
due to the difference between this ideal alignment of an infinite number of vortices
and the real finite line of vortices. This difference consists of three parts: (i) the
absence of vortices beyond the finite line of vortices, (ii) misalignment of vortices
from a perfectly aligned case (as given by (5.6)) within the finite line and finally (iii)
additional disturbances such as the influence from the vortical structures in the other
jet shear layer. One can estimate that the absence of vortices outside of the finite
line contributes ∼ 1/M to ∆H , where M is the number of vortices in the finite line.
From the fact that the subharmonic mode is well-defined and there are no other
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significant modes beside the fundamental and the subharmonic in this region of the
flow, we conclude that the deviation in alignment of vortices from that given by (5.6)
is small. So, the only difference between the dynamics of the pair of vortices in the
finite line of vortices, equation (5.13), governed by H and the dynamics of an infinite
array of vortices, (5.7), governed by H∞, will be a small, general random force given
by (∂(∆H)/∂δ,−∂(∆H)/∂ε). Thus, in order to account for the effects described above
all we need to do is consider the dynamics of the system (5.7) under the influence of
a small stochastic forcing.

In Rabinovich & Trubetskov (1989) and Gaponov-Grekhov & Rabinovich (1992)
it is rigorously demonstrated that stochastic forcing will create local instabilities
which will eventually destroy all phase trajectories passing through saddle point(s) to
create a region of finite width with a stochastic behaviour. This region is termed a
stochastic layer. Phase trajectories around other critical points like centres will remain
topologically unchanged. In our case, the separatrix is the line connecting the saddle
points (see figure 16) and thus the presence of a stochastic force will create a stochastic
layer around it. This is shown as a striped region overlaying the separatrix in figure
16. The dynamics of the system within a stochastic layer is very complex and will
not be discussed in detail here. The interested reader is referenced to Rabinovich
& Trubetskov (1989) for an extensive discussion. However, an especially important
result is that in this layer there are no well-defined phase trajectories and the system
can travel across it and in so doing move between inner and outer regions (i.e. between
shaded and non-shaded regions of figure 16b). Nevertheless, the system still has two
stable points φ1 and φ2. Every time its trajectory crosses the line δ = 0 it exhibits
the π-jump in subharmonic phase and the subharmonic amplitude drops to zero.
Therefore, the π-jump scenario will hold locally for the pair of vortices.

Consider a given pair of vortices ‘emerging’ at the x/θ0 ≈ 70 location. Depending
on the initial conditions, a pair can find itself either in the stable inner region (e.g.
point A) or in the outer region (e.g. point C) of figure 16(b). As any given pair of
vortices evolves in time and moves downstream, which could, for example, correspond
to either one of the paths A–E or C–D in figure 16(b), the subharmonic phase φs
would be either φ1 = −π/2 (δ < 0, e.g. point E) or φ1 = π/2 (δ > 0, e.g. point D). If
a trajectory starts in the shaded region of figure 16(b), it will stay in the stable region
with φs = −π/2. Otherwise it will eventually cross the line δ = 0 and the phase will
become φs = π/2. For points in the shaded region but very near the stochastic layer,
perturbations in ε and/or δ can make the system leave a stable region thereby giving
rise to changes in φs.

The δ-parameter combines both the subharmonic streamwise perturbation and the
inherent variation of the fundamental wavelength (frequency), while the ε-parameter
contains the cumulative effect of the subharmonic lateral perturbation both upstream
and downstream of location x. Let us suppose that the initial probability distribution
of δ is Gaussian-like with zero mean. From figure 17 it is easy to see that for ε = 0
both stable points will be equally probable with P1 = P2. Physically this situation
corresponds most closely to natural or very low-level subharmonic excitation. Note,
for instance, that both phase plateaux in the experimental results shown in figure 2
are equally visited in time. However, figure 17 also shows that for larger values of
ε > 0 corresponding to cases with higher local levels of the subharmonic perturbation,
the probability P2 of the system evolving toward the subharmonic phase φs = φ2

is greater than the probability P1 for the subharmonic phase to be φs = φ1. This
behaviour can be observed by comparing experimental results like those shown in
figures 2 and 12. Figure 12, which corresponds to a higher local level of subharmonic
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Figure 17. Schematic of relative probabilities for the subharmonic phase:
(a) ε > 0 and (b) ε ≈ 0.

perturbation (due to a higher u′f), shows that one of the values of subharmonic phase
is more probable than the other, with one value visited 8% of the time and the other
92%.

To show more directly how the model compares with experimental results, we
introduce a small-amplitude subharmonic perturbation in the y-direction as yj =
ε0 cos (2πj/λs) and a random deviation from an equally spaced streamwise vortex
distribution as xj = j + δ0N(0, 1). Here N(0, 1) denotes the normal probability dis-
tribution with mean value 0 and standard deviation 1 while ε0 and δ0 are small
constant parameters. From the experiments involving a moderate local subharmonic
perturbation level it was found that 0.07 6 a/λf 6 0.1 and 0.05 6 ε/λf 6 0.1. Using a
Runge–Kutta integration method the system (5.3) with 1500 vortices for ε0 = δ0 = 0.05
and a = 0.1 was numerically solved to find the resulting locations of vortices (xj, yj)
in time t. After restoring the resulting continuous velocity field, a Morlet wavelet
transformation was applied just as in the experiments. The resulting spatial evolution
of both the fundamental and subharmonic modes for t = 0.1 s was obtained and
results for the subharmonic are presented in figure 18. It should be noted that the
effect of core radius was investigated and the resulting phase trajectories showed that
the qualitative system dynamics were not sensitive to the assumed a value.

Comparison of figure 18 with experimental data presented in figure 12 shows very
good agreement regarding the essential aspects of the unsteady shear layer behaviour.
In comparing figures 18 and 12 recall that the spatial behaviour of the model
corresponds to temporal evolution in the real experiment. Although not presented it
should be noted that for both the model and experiment the fundamental exhibits
low-level random variation about statistically steady mean values in both amplitude
and phase. In contrast, the subharmonic phase for both experiment and model shows
a similar unsteady behaviour characterized by sudden π-jumps. During these jumps
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Figure 18. Computed spatial behaviour of the subharmonic mode after 0.1 s. ε0 = δ0 = 0.05.
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Figure 19. Computed spatial behaviour of the the subharmonic mode after 0.1 s.
ε0 = 0.0001, δ0 = 0.05.

the subharmonic amplitude approaches zero in both experiment and model. The
experiment shows a much greater probability for one value of subharmonic phase
than the other possible value and this is also in agreement with the model result.

Consider next the case of very small local subharmonic perturbation corresponding
to ε ≈ 0. Computational results are presented in figure 19 for ε0 = 0.0001, δ0 = 0.05,
t = 0.1 s. Now the system is observed to visit both subharmonic phase values equally
in time which is consistent with the experimental results presented in figure 2.

The computational results shown in figures 18 and 19 are consistent with the
discussion surrounding figure 17 and demonstrate how the subharmonic phase can
spend more time at one phase value than another for moderate local subharmonic
excitation.

It is important to note the difference between temporal π-jumps in phase for
the natural subharmonic mode and the π-shifts in average effective F–S phase angle
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between pairing and tearing regimes as observed in the bimodal forcing experiments
(figures 6 and 7). Sustained vortex tearing is not observed in experiments involving
the naturally occurring subharmonic. Even in the experiments involving bimodal
excitation, in which local subharmonic suppression is achieved by proper selection of
φin, it was found that such regions are characterized by a high level of temporal phase
variation. This is because the vortex tearing regime is associated with an unstable
saddle point in phase space. Consequently trajectories will not remain there for the
natural subharmonic and even with artificial excitation of the subharmonic it is
difficult to keep the phase trajectory near the saddle point. In fact, application of the
wavelet transform to regions of the flow characterized by subharmonic suppression in
the bimodal forcing experiments showed temporal subharmonic amplitude and phase
behaviour which is similar in character to that observed in experiments involving the
natural subharmonic. In contrast, regions of strong subharmonic growth are found
to be associated with little temporal phase variation, a consequence of the stability
inherent in the two fixed points. In the bimodal forcing experiments, the streamwise
variation in the local effective F–S phase for φin corresponding to vortex pairing and
tearing are separated by π radians for x-stations where the subharmonic is suppressed.
This is consistent with the Hamiltonian model. When the system is forced to be in an
unstable tearing regime the trajectory lies in the neighbourhood of the saddle point
in figure 16(b). This corresponds to the case of φs = 0 and As ≈ 0 (see figure 16c),
while the pairing scenario corresponds to φs =± π/2 and peak amplitude As (i.e. the
centres in figure 16a). The difference in local effective F–S phase angle between cases
is [φeff ] = [φf]− 2[φs], where [·] denotes the difference in values between the pairing
and tearing regimes. As [φf] = 0, [φeff ] = −2[φs] = −2(± π/2) = ∓ π as indicated in
the experimental results shown in figures 5, 6 and 7.

The model reflects all essential features of the vortex interactions within the shear
layer: the unsteady subharmonic amplitude variation and the existence of two pseudo-
stable phase points with sudden π-jumps between them. The phase excursions and the
amplitude drops occur at the same time.

The dissipative effect of viscosity will change centre points into stable foci which
is equivalent to the eventual merging of two pairing vortices into one. However, it
is important to note that viscosity will leave the saddle point unchanged so that the
π-jump scenario will still hold in the presence of viscosity.

Of course, since the model is inherently two-dimensional it will fail to apply at
streamwise locations well downstream of vortex pairing where the initially span-
wise coherent vortex filaments become three-dimensional and mixing transition has
occurred.

6. Summary
In experiments utilizing excitation of only the fundamental mode over the range

0.002% 6 u′f 6 0.1%, the naturally developing subharmonic exhibits an interesting
temporal amplitude and phase variation that has not been previously reported. This
takes the form of intermittent π-shifts in subharmonic phase between two fixed phase
values. These phase jumps are observed to be highly correlated with the local drops
to a near zero value of the subharmonic amplitude. In contrast, the fundamental
amplitude and phase show no such behaviour, exhibiting only low levels of temporal
modulation. The temporal phase behaviour of the subharmonic has the effect of
intermittently disrupting the phase lock with the fundamental. Similar behaviour is
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encountered in bimodal forcing experiments for those initial effective phase angles
φin that are found to give rise to subharmonic mode suppression.

A Hamiltonian formulation of the problem is shown to provide remarkable agree-
ment with the experimental results. All the essential aspects of the temporal amplitude
and phase behaviour of the subharmonic are reproduced by the model including
amplitude-dependent effects. The model is also shown to provide a dynamical systems
based explanation for time-average amplitude and effective phase behaviour reported
in previous investigations. Intermittent subharmonic phase shifts and subharmonic
amplitude minima observed in the wavelet transformation correspond to isolated
vortex tearing events. A key element in giving rise to the observed dynamic behaviour
is the existence of a stochastic layer in which phase-space trajectories can travel from
one stable pairing regime to another. In the real flow the stochastic layer is associated
with perturbations to a local pair of vortices from both upstream and downstream
vortical structures as well as the shear layer on the other side of the jet potential core.

The π-jump scenario for subharmonic phase is the rule in experiments involving
low-amplitude forcing of the fundamental and the natural development of the sub-
harmonic. The model demonstrates that this is because the vortex tearing regime is
associated with an unstable saddle point in phase space. As a consequence, system
trajectories will not remain there for the natural subharmonic, and even with artificial
excitation of the subharmonic instability in bimodal forcing experiments, it is difficult
to keep the phase trajectory near the saddle point (even if the forcing amplitudes are
quite large). As a consequence there is a very narrow range of φin which is capable of
giving rise to subharmonic mode suppression. Application of the wavelet transform
to regions of the flow characterized by subharmonic mode suppression in the bimodal
forcing experiments shows temporal subharmonic amplitude and phase behaviour
which is similar in character to that observed in experiments involving the natural
subharmonic. In contrast, regions of strong subharmonic growth are found to be
associated with little temporal phase variation, a consequence of the stability inherent
in the two fixed points.

The model is able to explain why there is a higher probability for the subharmonic
phase to stay near one of the stable phase points with increases in initial excitation
amplitude. In fact, numerical simulations based on the model show a very good
agreement with the corresponding wavelet-based experimental data in this regard.

In addition, as described in § 5.2, the dynamical systems model provides a sound
explanation for the π-shift in time-average effective phase angle φeff that occurs in the
bimodal forcing experiments at a fixed streamwise location between vortex pairing
and tearing regimes.

Appendix
Consider the sum

H = −1

2

n=+∞∑
n=−∞

ln

{[
1 +

4(ε2 + δ2)

a2 + (2n+ 1)2

]2

−
[

4δ(2n+ 1)

a2 + (2n+ 1)2

]2
}

= −1

2

n=+∞∑
n=−∞

ln
Q
(

1
2
(2n+ 1)

)
[a2 + (2n+ 1)2]2

, (A 1)

where

Q(j) = 16[ã2 + j2 + (ε2 + δ2)]2 − 4δ2j2, ã = a/2. (A 2)
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Consider

∂H

∂ε
= −1

2
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n=−∞

∂Q
(

1
2
(2n+ 1)

)
∂ε

Q
(

1
2
(2n+ 1)

) = −1

2

n=+∞∑
n=−∞

f

(
(2n+ 1)

2

)
. (A 3)

Use the Mittag–Leffler’s formula,

n=+∞∑
n=−∞

f
(

1
2
(2n+ 1)

)
= π

∑
all poles of f(z)

Res{tan πz f(z)}. (A 4)

Poles of f(z) correspond to zeros of the polynomial Q(z). Q(z) has four zeros:
z1,2,3,4 = ± δ ± i

√
ã2 + ε2. For the z’s

tan πz1,2,3,4 =
1

2

± sin (2πδ) ± i sinh
√
ã2 + ε2

cos2 πδ + sinh2 (π
√
ã2 + ε2)

, (A 5)

Res f(z1,3) = −Res f(z2,4) = −i
ε√

ã2 + ε2
. (A 6)

Finally

∂H

∂ε
= − πε√

ã2 + ε2

sinh (2π
√
ã2 + ε2)

cos2 (πδ) + sinh2 (π
√
ã2 + ε2)

. (A 7)

Similarly,
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(A 8)

with the final result

∂H

∂δ
= π

sin (2πδ)

cos2 (πδ) + sinh2 (π
√
ã2 + ε2)

. (A 9)

Reconstruction of H from ∂H/∂ε and ∂H/∂δ gives

H(δ, ε) = − 1
2

log
[
cos2 (πδ) + sinh2 (π

√
(a/2)2 + ε2)

]
. (A 10)
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